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Numerical investigations are conducted into steady, two-dimensional (2-D), laminar 
combined convection flows bounded between two very long and wide horizontal parallel 
plates. At some location along the duct, one, or both, of the duct surfaces undergoes a 
temperature change. These temperature changes create three case studies; namely, the 
lower wall is heated, the upper wall is heated, and both walls are heated. Results are 
obtained for a fixed Prandtl number of 7.02 at low and moderate values of the Reynolds 
number over a wide range of values for the ratio of the Grashof number to the square of 
the Reynolds number. It is observed that when applying heat at the upper wall, a thermally 
stratified flow is generated, and when the fluid is heated from the lower wall, a transversely 
oriented recirculation is predicted that extends upstream of the wall temperature discontin- 
uity for values of Gr/Re* > 17; the exact value is a function of Re. When applying heat on 
both walls simultaneously, the stratification and recirculation effects of the other two cases 
are combined and enhanced. 
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Introduction 

Laminar convection in internal flows has been the subject of 
much theoretical and experimental research, and a thorough 
literature survey has been given by Aung (1987). The area of 
combined laminar convection is of great importance because 
of its wide ranging engineering applications: e.g.. in the cooling 
processes in the primary and secondary circuits of nuclear 
reactors, heat transfer processes in the design and control of 
compact heat exchangers, the flow of cement or muds in bore 
holes during drilling and cementing operations in the gas and 
oil industries, and in the cooling of densely packed circuit cards 
in electronic equipment. 

The results of numerous experimental and numerical 
invzestigations concerned with free convlection effects on forced 
flow laminar heat transfer within horizontal ducts are av*ailable 
in the literature. Mori and Lchida (1966) performed an 
experimental and theoretical study on the effect of buoyancy- 
generated vortex rolls that align parallel to the streamwise 
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direction in fully developed forced convection heat transfer 
between horizontal parallel plates, where the lower plate was 
hot and the upper plate was cold. The conditions specifying 
the onset of longitudinal Gortler vortices was also studied 
analytically by Nakayama et al. (1970) and then Akiyama et 
al. (1971) reproduced the phenomena experimentally using air 
as the working fluid. Buoyancy effects on the heat transfer in 
a thermally developing horizontal parallel plate duct for the 
case of heating from below and above with unequal uniform 
heat fluxes was investigated experimentally by Osborne and 
Incropera (1985). Heating from above produced thermal 
stratification of the upper boundary layer. which was virtually 
impenetrable to the buoyancy-induced secondary flow 
originating from the heated lower plate. 

The influence of the buoyancy force on laminar forced 
convection in the entrance region between horizontal parallel 
plates was studied by Naito (1984) when either. or both, of the 
walls of the duct are maintained at equal constant temperatures 
or where one wall is held at a constant temperature, and the 
opposite wall is insulated. The onset of heating coincided with 
the duct inlet. where the flow velocity was uniform. In terms 
of the parameters defined in this paper, the maximum value of 
the ratio of the buoyancy force to the intertia force used by 
Naito was 5.63. and this was found to be insufficient to produce 
recirculating flows. Naito and Nagano (1989) generalized the 
earlier research of Natio to inclined parallel plates, 
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In this paper. the combined convection between two 
horizontal parallel plates is investigated numerically for low 
and moderate values of the Reynolds number, so that the terms 
representing the streamwise diffusion of momentum and energy 
must be retained. The governing equations of mass, 
momentum. and energy retain their respective coupling and 
nonlinearity in the advection of momentum and heat. Hence, 
changing the duct wall temperature affects both the fluid and 
thermal fields. The governing parameters of this problem are 
the Reynolds number Re, the Prandtl number Pr, and the ratio 
of the Grashof number to the square of the Reynolds number 
Gr/Re’. The range of values of the parameter Gr/Re’ is 
selected to encompass both pure forced convection and 
large-scale recirculating flows generated when the fluid is 
heated from below. These low-to-moderate Reynolds number 
flows are computed with a Grashof number that is associated 
with heat and fluid flow in the laminar regime. The numerical 
method selected for the problem is similar to the technique used 
by Morton et al. (1989). although a variety of higher-order 
approximations, such as the QUICK scheme. were tried, but 
they yielded oscillating solutions near to the temperature 
discontinuity. 

Governing equations and numerical model 

In the industries mentioned in the introduction. there are many 
situations when a Newtonian fluid of constant temperature 
flows along a very long and wide duct. Then. at some location 
along the duct, the temperature of one, or both. of the walls of 
the duct changes rapidly to another constant temperature. This 
physical situation is mathematically modeled as a steady. 
laminar combined convection of a viscous fluid, with velocity 
components LI, c. which is confined between two very wide 
horizontal parallel plates, which mathematically may be 
modeled between two very wide horizontal parallel plates; i.e., 
the fluid flow takes place in the domain - x < x < X, 
--u 2 1’ 5 a, and the temperature changes at x = 0. In the far 
upstream region (X + -z). the fluid is in fully developed 
Poiseuille flow and is at a constant temperature T,,. At the duct 
exit (x + SX), fully developed Poiseuille flow is attained, and 
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the temperature profile becomes either constant or a linear 
function of y. 

Three thermal temperature boundary conditions are 
considered as follows: 

T = 7;. for - x <.x-co J’= -a 

T = Tj, for Oi.x<x y=-a 
T = 7;, for ~ % < .Y < % !‘= +u 

Ctrsr II: Hrutrd upper wall: 

(1) 

T = 7;, for - Yv < Y < % 1’= -cl 
T = 7;. for ~ % < + < 0 I‘ = + a 
T = 7;, for Ol.x< % J’= +a 

Crrsr 111: Hruted lower and upper wulls: 

(2) 

T = 7;, for - x -c.~u<O y= *a 
T=r, for Oj.x< x J= fa (3) 

For Case I (and Case III to a lesser extent), the fluid flow will 
be unstable under certain operating conditions caused by the 
top heavy density distribution caused by the heating from 
below (see Mori and Uchida 1966 and Hwang and Cheng 1973). 
However. before a stability analysis can be performed then the 
steady solution must first be determined, and, hence, the 
importance of the present investigation. Even in circumstances 
where instabilities arise, the predictions of this analysis will be 
appropriate up to the location where instabilities first occur. 

The working fluid is assumed to be Newtonian with constant 
specific heat capacity, coefficient of expansion, thermal 
conductivity. and dynamic viscosity. The gravity force acts 
vertically downward in the negative y-direction perpendicular 
to the surfaces of the duct, the Boussinesq approximation is 
invoked. and viscous dissipation IS neglected, because it has 
only a small effect (see Collins 1975). The above assumptions 
were designed to keep the theoretical model as simple as 
possible. although including variations in the physical 
quantities, such as temperature-dependent viscosity, present no 
difficulties in the mathematical formulation (see Collins 1980). 

Notation 

I: 
half duct width 
streamwise location corresponding to the computa- 
tional duct inlet 

1. \‘ streamwise and transverse coordinates 
x: Y dimensionless streamwise and transverse 

coordinates. = .x-:aRe and y/a 

Grwk I 

&r 
h 
k 
L 
Nu 

Q 
P 
P 
Pr 
Re 
T 
u, 1’ 
u, v 

specific heat capacity at constant pressure 
friction factor 
acceleration due to gravity 
Grashof number, = gfi(T, - T,)u’,Y’ 
local heat transfer coeficient 
thermal conductivity of the fluid 
dimensionless streamwise length 
local Nusselt number, = ha/k 
mass flux of fluid 
fluid pressure 
dimensionless pressure, = (p - p(, + (~p,~)ip,.u~ 
Prandt number, = 19,~ 
Reynolds number, = w,,,:, 
temperature 
streamwise and transverse velocity components 
dimensionless streamwise and transverse 
velocities, = u/u,,, and c:u, 

molecular thermal diffusivity 
coefficient of expansion, = (- l/p)(Fp/dT) 

II dimensionless temperature 
I’ fluid density 
II, dimensionless stream function 
(0 kinematic viscosity 
R dimensionless vorticity 

Subscripts 
d upstream flow region 
e value taken at duct entrance 
h value taken at the hot wall 
L upper wall value 
rn mean value 
If upstream flow region 
L; upper wall value 
Y. value taken at infinity 
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The fluid and thermal fields within a horizontal two- and applying the nondimensionalization 12 to Equation 7 
dimensional (2-D) parallel walled duct are governed by the results in the following: 
equations of continuity, streamwise and transverse momentum 
and energy, which can be written in the following form: 

(‘II cltj (‘II, 8 - = pr-’ 
I i2H i*u 

+ 
?u ?c 

ix iY ix iY i Re2 (7X2 ?Y* I 
(16) 

+ = 0 14) 
(?I ?L The coupled nonlinear elliptic Equations 14-16 have now to 

be solved subject to the following nondimensional boundary 
?u ill iP + L’ = -p, ’ . + 1’ 

i’u 
14 

l-l’ 
+ 1 

i’lr 
(51 

conditions: 
?z iJ c z ( j’ - 2j at 
ir 

u + L’ I?’ = -p,. l ;; + \f{ j:r + ;y,;] - .c/Ll - /QT - 7;.)] 
X = -b/u Re for - lIY_<l : lj = Y(3 - Y2)/2, 

ix - ( j’ D=3Y, u=o 
(6) (17) 

(7) 
at 

y= -1 for -h/aRe< X < x:$ = -1. 

It is assumed that the flow and temperature of the fluid 
in the duct do not feel the effects of the change in the 
temperature boundary condition at .y = 0 before the location 
.x = - h. The value of h is adjusted in each calculation so that 
any larger value of h causes no change in any of the results 
presented in this paper. Thus. the boundary conditions for Case 
l&the fluid being heated from the lower walll are as follows: 

at 

x = -b. -<I 5 y I u, Ii = Ll,,. ,’ = 0. T = 7;. (81 

at 

!‘= -u. -h<.Y< Y-. u=o, ,’ = 0 
-b<z<O. T= 7;, ilO) 

OS\-< Y-. T= r, 

at 

?’ = 4 - h < x < T? u = 0. I’ = 0 I T=7; (I 1) 

The velocity II, = u, corresponds to the fully developed 
parabolic profile. and T(J) is a linear function of x. The 
boundary conditions for Cases II and III differ only in the wall 
temperature definitions as specified in Equations 2 and 3. 
respectively. 

The following dimensionless variables: 

X = u/uRe, Y = j’:tr , L’ = uu,,, . 1’ = I u ,,,. 

P = (p - pe + </p,.?.):p,,LI; and II = I 7‘ ~ TJ ( r, - 7,) 

IIZ) 

are now introduced. On introducing the stream function 
$(X, Y), which satisfies the continuity Equation 4 defined by 
the following: 

C’= -Re ’ ii 

ix 
(13) 

then the dimensionless vjorticity can be wjritten as follows: 

(14) 

Eliminating the pressure terms in the momentum Equations 
5 and 6 results in the following stream functionvorticity 
formulation: 

?R ?I) ii) iR 1 I-R i’R Gr i0 
+ + 

(7x iY ?X iY Re’ iXL (-Y? Rc’ iX 

at 

?$li’Y = 0 
-b:uRe<X<O :U’=O (18) 

OIX<X :o= 1 

Y=l for -h/u Re < X < -r-:$ = 1, 
?~/c:Y=O.U=O 

(19) 

at 

x 4 7. for ~ IjY<l : $4 + Y(3 - Y2)/2, 
R+3Y, 
: a + (1 - Y)i2 (20) 

for the case of fluid heating from below: i.e., Case 1. When 
the fluid is heated from the upper wall only; i.e. Case II, the 
thermal conditions in Equation 18 have to be applied at Y = 1. 
the temperature condition in Equation 19 must be applied at 
the lower wall, Y = - I, and the exit temperature profile in 
Equation 20 replaced by (I -+ (I + Y)/2. Similarly, when the 
fluid is heated by both walls; i.e., Case III. the thermal 
conditions for the lower wall in Equation 18 must also be 
applied at the upper surface, Y = 1, and for X + rxi, the 
asymptotic temperature profile in Equation 20 is replaced by 
0 4 I. 

Equations 14 16, along with boundary conditions 17-20, are 
expressed in finite-difference form and an under-relaxation 
technique is used to solve the resulting algebraic equations on 
a fine grid (see Ingham et al. 1988a, 1988b. 1990). Furthermore, 
to satisfy the condition 20. a transformation of the axial 
coordinate is employed (see Zeldin and Schmidt 1972) for full 
details). The treatment of the first-order vorticity and 
temperature derivaties was not originally restricted to the 
simple first-order upwind scheme that was ultimately used in 
this study. Central differences produced nonoscillatory 
solutions for values of Gr/Re* that were sufficiently small. 
However. for Gr/Re’ >> 1. large gradients. particularly in the 
vorticity, near any temperature discontinuities resulted in 
unphysical solutions where spatial oscillations were generated. 
Second-order upwinding was also rejected. because the range 
of values of Gr/Re’. for a fixed value of Re, for which 
convergence can be obtained, is smaller than that for the 
first-order upwind method. Convergence problems of under- 
shoot and overshoot occurred with second-order upwinding; 
whereas. the QUICK scheme generated unphysical spatial 
oscillations whenever recirculations were present near the 
temperature discontinuities. 

An absolute convergence criteria was employed; that is, if 
one additional iteration is performed, then none of the field 
variables must change by more than a preassigned quantity at 
any grid point. It was found that a value of 10m5 was sufficiently 
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small so that any further decrease does not change the graphical 
results presented in this paper. It was found that convergent 
solutions were only possible if R and 0 were underrelaxed. Q 
more so than 0. and the value of the relaxation parameter for 
$ was maintained at unitv in every solution. In addition, as 
the Gr:ReZ parameter was;ncreased, the relaxation parameters 
for Q and H needed to be decreased. 

Results 

Results were obtained with 401 x Xl. 201 x 41. and 101 x 21 
grid points in the stream-wise and transverse directions. 
respectively. By comparing quantities such as local Nusselt 
numbers and friction factors it was adequately demonstrated 
that the grid 201 x 41 was sufficiently line to obtain accurate 
solutions; i.e., it is graphically impossible to detect the 
differences in the results obtained when using the grids 
201 x 41 and 401 x 81. Therefore. all the results presented in 
this paper are those obtained using a grid of 401 x Xl. The 
values of the ratio Gr;Re’ were chosen as 0, IO. 20. 30. and 40. 
and the Reynolds number was fixed at 5~ 10, and 20. 
respectively. In addition, the Prandtl number uas taken as 7.02. 
which represents water at 20 C (see Gzisik 1985). A variety 
of stream-wise locations of the duct inlet position were 
considered, and a value of -h clRc = -0.X was chosen. 
because the velocity and temperature profiles were in- 
distinguishable from the inflow conditions applied as X + K 

Situations that involve a hot fluid being cooled by ualls 
maintained at a lower constant temperature can be computed 
using the model. For example. the main eflect of cooling the 
fluid from below only is that of hydrodynamic and thermal 
stratification. which is achiev*ed by setting Gr < 0. This 
situation gives rise to flows that are mirror images of the Ilows 
presented for the Case II conditions of a hot upper wall only. 
where Gr > 0.. The similarity between heating and cooling 
exists in all three cases and arises because the temperature 
variable 0 appears linearly in the governing Equataions 14-16. 
Therefore. the results for the cooled wall situations are not 
presented. 

Case I. Heated lower wall 

Contours of the nondimensional stream function and 
temperature for a variety of combinations of Re and Gr Re’ 
are displayed in Figures I and 2 respectively, for the case of 
the fluid being heated by the lower wall. F-igures la and 23 
illustrate clearly the effects of the temperature discontinuity on 
the lower wall buoyancy-generated recirculation on the fluid 
and thermal fields. The buoyancy effect is represented by a 
streamwise temperature gradient in the vorticity transport 
Equation 15, and hence there exists a mechanism for 
transportating heat upstream at any v,alue of the Reynolds 
number. At higher values of Re, streamwise diffusion becomes 
negligible, and any upstream effects arc caused by the 
buoyancy-generated recirculation. The recirculation region acts 
as a thermal obstruction. interfering with the passage of heat 
from the leading edge of the heated surface to the main body 
of fluid. Thus. the effective duct width is reduced by the 
presence of the reverse flow region, and this, in conjunction 
with the continuity of mass principle. causes the downstream 
section of the flow to experience an increase in streamwise 
velocity on bypassing the recirulation region. 

The effects of increasing the Reynolds number with all 
remaining parameters held constant are illustrated in Figures 
la-c and ?aac. The upstream displacement of the separation 

(a) 

/ 
I / I I 1 

-0 4 -0 2 00 0.2 04 06 x 38 

P,e = 5 0 and Gr,‘Re* = 40.0 

15: 

/--- 
-0 2 -0 1 00 Gi 02 C? \: :r 

Re = 10 0 and Gr/Re' = 40 0 

Cc) 

I -010 -0.05 -o'.oo 0 05 0.10 o.i5 x 0.20 

Re = 20.0 and Gr/Re' = 40.0 

Cd) 

I / 
-0.2 -0.1 ‘00 011 0.2 0.3 x 04 

Re = 10.0 and Gr/Re* = 20.0 

(e) 

-6 2 -0 1 00 01 0.2 I 03 s 04 

Re = 100 and Gr:Re'= 00 

figure 7 Contour plots of the stream function $ for the value of Re 
and Gr/Re’ indicated for Case I. I/ E i-1.03, -1 .O. -0.8, , 1 .O). 
$ = kl 0 represents the upper (t) and lower (-) walls, 
respectively 

point increases as the Reynolds number increases. Similarly, 
the reattachment point moves farther downstream for 
increasing v’alues of Re. An important difference between 
Figure la-c is how the Reynolds number affects the shape of 
the recirculation region. The position at which maximum 
penetration across the duct is achieved by the reverse flow 
region moves farther upstream as the Reynolds number 
increases. Figure 2 shows how thermal penetration across the 
duct improv*es as Re decreases, 

Figures 1 b. d. and e as well as 2b, d, and e display how the 
tluid and thermal fields change with respect to the heating 
parameter Gr/Re* for Re = 10. Forced convection Gr = 0 has 
the fully developed Poiseuille velocity profile, where changes 
in temperature have no effect on the fluid density. The 
dominant processes present are transverse diffusion of heat 
coupled with its simultaneous advection downstream. Stream- 
wise diffusion does exist and is responsible for the small 
upstream thermal influence about the onset of heating at the 
lower wall (see Figure 2e). Computationally, the onset of reverse 
flow occurs at Gr/Re’ 5 I7 for Re = 10, and as Re increases, 
this critical value of GriRe’ slowly decreases, The following 
general results were observed for increasing values of the 
parameter Gr/Re’. with Re fixed. 

(I) The size of the recirculation region increases in both the X 
and Y directions. 
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from the upstream traveling fluid to the integral formula 
C@) 

--- 
I==---- 

Equation 23. The definition 21 will always -ensure that 
:e the value of 0, will be positive: although, there may be other 

- 1 
-0 4 -0.2 0.0 02 04 06 x 06 definitions for 0, within the recirculation zone, which will also 

Re = 50 and Gr'Re' = 40 0 
ensure positive values of the Nusselt number. The dimension- 
less bulk temperature is plotted as a function of X in Figure 
3(a). The upstream transportation of heat caused by the 
buoyancy-generated recirculation is enhanced as the parameter 

(b) 
Gr/Re’ increases, and this causes the upstream response in 8,. 
Thermal penetration across the duct is inhibited by the 

&- 
-6 1 

behavior of the recirculation region. where heat diffused 
-cm 2 tG 01 0.2 03 x 04 transversely from the lower wall is advected in the upstream 

EP = li ci ar.d Gr i?e' = 40 0 direction. This process becomes more dominant as Gr/Re2 
increases, thus producing reduced values of 8, downstream 
from the onset of heating. In the limit, as Y + x, all the 0, data 
curves, for any values of Gr/Re2 and Re, converge toward the 

r... - . . ..___ -.-- . ~..-.._--- _ .._- 0.15 x 0.20 (e) 0 :a- --~.I-’ 

F.“e = 2C.3 acd Gr,Re' = 40.0 /..:-1:.-.---- 
0" 0 oa+ -- ///I: ._...... : 

.- ; ._ 

(4 OOL I ! -L- .-L-IA 
.d -0 4 -02 00 02 04 0.6 0.6 10 x i2 

I , 
-0.2 -0.1 0’0 0.1 0.2 0.3 x 04 

Re = 10.0 and Gr/Re* = 20.0 (b) L .-'------ *or---- 7 
, / 

4oi 
4 1 

:: 
: ‘.,_ 

I . . 
0.0; 

;: I._ 
:: . . 1 ~~--.----------.--__.--..-.....~~.~~.~~..~~....... __I : 

1 -0.4 
-0.2 0.0 0.2 04 0.6 0.8 1.0 1.2 x 

Re = 10 0 and Gr/Re' = 0.0 

Figure 2 Contour plots of the temperature 0 for the value of Re and co) _--__---_ -_. -_----._ -.--- -- 

Gr/Re’ indicated for Case I. fJE (0.01. 0.05, 0.1, 0.2, 0 4, 0.6, 0 8/ -2;’ _ 
and fJ = 0.01 is the contour nearest to the upper wall. 

._.. 
--,, 

;I 
u’ ‘~ .’ ... : 

/ 
I -307 ._..__........_ 

(2) The separation and reattachment points move further ‘- ok___/- I 
upstream and downstream. respectively. -301 I I I I I- 

(3) The center of the recirculation is displaced upstream. -04 -02 0.0 0.2 0.4 0.6 0.6 1.0 x 1.2 

The dimensionless bulk temperature 0, is taken to be the 
cup mixed temperature, whereby the streams entering a cross 
section are completely mixed. so that the stream leaving are at 
an equilibrated temperature. This is essentially an enthalpy 
balance, and for a recirculation region, it is given by the 
following equation. which has been rearranged to provide (I,,,. 

(d) 

where Q,, and Q, represent the mass fluxes of the 
downstream and upstream flows within a recirculation region, 

(e) 
- -__. -___-------_ 

‘“L---- 

respectively, and A is the transverse location of the boundary $ 6.01 I 
between these flows, which is a minimum turning point in $. z t 

I 
In the limit of no recirculation. Equation 21 reduces to the 40, 

normal definition of the dimensionless flow averaged c 
0.01 I I 1 I I I I 

temperature by Shah and London (1978): 
I 

-0.4 -0.2 0.0 0.2 0.4 0.0 0.6 1.0 x 1.2 

0, = I 
J‘ 

1 

0 (” dY Figure 3 Plots of the bulk temperature, lower wall local and mean 
2 -, iY 

(22) 
Nusselt number, lower and upper wall friction factors for Re = 10 
and the values of Gr/Re* indicated for Case I. - 

Equation 21 was chosen to represent the bulk temperature. Gr/Re’ = 0.0; , Gr/Re’ = 20.0; ---, Gr/Re2 = 40.0. The loi 
because this avoided problems with the negative contributions wall is hotter from X = 0 to x. 
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fully developed value of 0.5, as predicted by the classical duct 
flow situation (see e.g. Shah and London 1978). 

The friction factors f for the lower and upper walls are 
defined (see ijzisik 1985) as follows 

j’,> = (-8RI,=-,)Rc : r; = (+8RI,= 1)Re (23) 

The friction factors are displayed in Figures 3b and c as a 
function of X for the lower and upper vvalls. respectively, for 
Re = IO and Gr:Re2 in the range [0,40]. The lower wall values 
of ,f‘ peak rapidly at the temperature discontinuity (see Figure 
3b). For a fixed value of the Reynolds number. the 
corresponding wall shear stress eventually becomes negative as 
the ratio Gr:Re’ increases for reverse flow to be initiated. A 
similar behavior is observed for fixed Gr/Re’ as the Reynolds 
number is increased. The positions of the separation and 
reattachment points of the dividing streamline that contains 
the recirculation regions are situated at locations where ./,, = 0. 
A change of sign in the wall shear stress indicates a 
corresponding reversal in the sign of the normal gradient of 
the local streamwise v*elocity gradient at the wall. A locally 
reduced effective duct vvidth at streamwisc locations that 
coincide with the recirculation region coupled with the constant 
mass flux in the streamwise direction are responsible for the 
increased upper wall friction factors, The exit How profile is 
fully developed, so that for X >> 0. 1,. and /r + 2.4, as predicted 
by the classical duct flow solutton: namely, f Re = 24 (see. e.g.. 
Shah and London 1978). 

The local Nusselt numbers become the follovving: 

coefficients become progressively smaller as the parameter 
Gr/Re’ increases. The largest difference in the average Nusselt 
numbers occurs within the recirculating region. Within the 
framework of these purely 2-D flows, the buoyancy-generated 
recirculation causes advection of heat upstream, resulting in 
greater removal of heat prior to X = 0. Furthermore, the 
associated backward-moving lower wall layer degrades the heat 
transfer process for X > 0. In comparison to the work of Naito 
(1984), where entrance region heat transfer coefficients were 
found to increase at the lower wall in the presence of buoyancy, 
the present results seem to be contradictory. This difference is 
probably because of the uniform entry velocity profile used by 
Naito. where the developing boundary layers immediately 
downstream of the onset of heating contain shear rates far 
greater than those associated with development from the 
Poiseuille entry flow. Hence, the corresponding greater rate of 
heat advection downstream in the vriscous wall layers will 
enhance the wall heat transfer for X L 0. In the limit, as 
X --t r_. all the curves tend to the same limit; namely, 
Nu,,.L + I, as expected from the classical duct flow solution 
(see. e.g., Shah and London 1978). 

Case II. Heated upper wall 

Contours of the temperature for a variety of combinations of 
the parameters Re and Gr,!Re’ arc illustrated in Figure 4. The 
stream function is not displayed, because the effect of buoyancy 

for the lower ( Y = - 1) and upper ( Y’ = 1) walls, respectively. 
The lower wall Nusselt number IS plotted as a function of the 
streamwise coordinate X in Figure 3d for Re = IO. and 
0 < Gr,!Re2 5 40. The temperature field discontinuity is 
represented by the expected singularity in the local values of 
Nu,,. Upstream heat transfer effects of the recirculation region 
produce a rapid increase in the point Nussclt number prior to 
the onset of heating that occurs at lower values of X as the 
parameter Gr:‘Re2 is increased for a tixed v*alue of the Reynolds 
number. Essentially, this is a region where iO:iYiv- 1 is large 
and (0, - (I],= ,) << I. resulting in numerical \,alues of 
Nu,, that are greater than 12. Dovvnstream of the onset of 
heating, successively lower heat transfer coethcients are 
observed as the value of Gr:R$ is increased for Re in the range 
[5. 201. which is another consequence of the recirculating 
region. As X + % ~ the fluid and thermal tields tend to their fully 
developed states so that Nu,~ --t I. and this is consistent with 
the classical duct flow results quoted by Shah and London 
(1978). The upper wall Nusselt numbers remain zero until heat 
is transmitted across the duct. At some large distance 
downstream, Nu,. monotonically increases to the classical duct 
flow solution so that as X + Z, Nut + I. 

The average heat transfer coefficients between the streamwise 
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locations X = 0 and X = L is defined as follows: 

Nu,=; i 
1. 

Nu dX (25) (e) 
LJo I , 

ala- 
I I 

where L is some streamwise location downstream of the -0.2 -0.1 0.0 0.1 0.3 x 0.4 

onset of heating. Using Simpson’s rule to evaluate the integral Re = 10.0 and Gr/Re* = 0.0 
in Equation 25. then Nu,,,, for the lower wall. is plotted as a 
function of X in Figure 3e for Re = IO. and 0 ( Gr/Re2 I 40. 

Figure 4 Contour plots of the temperature H for the values of Re 
and Gr/Re* Indicated for Case II. HE [O.Ol, 0.05, 0.1, 0.2, 0.4, 0.6, 

Downstream of the onset of heating, the mean heat transfer 0.8) and f) = 0.01 is the contour nearest to the lower wall. 
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is simply to produce a stratified layer of heated fluid traveling 
downstream beneath the upper wall. This type of motion is 
consistent with the 3-D. finite-difference analysis performed by 
Incropera and Schutt (1985), where the streamlines tend toward 
the upper wall near to the onset of heating point, which 
indicates that within the developing stratified layer. the fluid IS 
accelerated downstream. Consequently, to preserve the mass 
flux, the streamwise velocities in the entrance region below the 
heated layer are lower than for fully developed flow. Hence, an 
effect of developing upper wall stratification is the reduction of 
the velocity gradients in the vicinity of the lower wall. For a 
sufficiently high value of Gr:‘Re’, the onset and subsequent 
development of a lower wall recirculation region becomes 
possible, although no such conditions are considered in this 
paper. Because an,y. response at the lower wall is caused by 
upper wall stratthcation. any such recirculation region 
generated by heating from above must occur downstream of 
the onset of the heating location. In the absence of recirculation. 
the dominant heat transfer process is simply the diffusion of 
heat from the upper surface. which is then advected 
downstream. The effect of stream-wise thermal diffusion is 
illustrated in Figures 4a+c, w*here the influence upstream of 
X = 0 is reduced as Re increases. In contrast to the previous 
study for the heated lower wall. the buoyancy effect does no1 
result in the transport of heat and mass upstream. so that as 
Re becomes large. the solution is of the classical boundary-layer 
type. The velocity profile returns to the fully developed form. 
and the temperature gradient across the duct becomes linear 
as X + z. 

The dimensionless bulk temperature O,,, as a function of ?( 
is displayed in Figure 5a. Because the buoyancy force resuhs 
in thermal stratification downstream of the onset of heating 
location, the upstream influence is caused by streamwise 
diffusion. For Re = 10. increasing the value of the heating 
parameter Gr:Re’ leads to greater rates of increase of 0, about 
the onset of heating. This trend is mamtained downstream so 
that a larger value ofGr for Re fixed results in stronger thermal 
stratification, and thus accelerating further the upper nail 
viscous layer. In all cases, the bulk temperature tends to the 
theoretical fully developed value of 5.0 as X + -K 1 as expected 
from the classical duct flow solution. F‘riction factor plots arc 
shown in Figures 5b and 5c as a function of the streamwise 
coordinate, X for the upper and lower walls. respectively, for 
Gr/Re’ = 0, 20, and 40, and Re = IO. Except for the forced 
convection results, where the velocity profile is fully developed 
everywhere, the upper *all friction factors peak at the onset of 
heating. Upstream of this location, any deviation from the 
classical duct flow asymptotic value of ,f‘ = 24, Re is caused by 
streamwise diffusion. Hence, as Re becomes large. the upstream 
effect is reduced, and the velocity profile remains fully 
developed at all stream-wise locations prior to X = 0. 
Downstream of X = 0, the friction factors for values of 
Gr/Re2 > 0 tend to their asymptotic state. 

The upper wall, local Nusselt number as a function of the 
streamwise coordinate X is shown in Figure 5d for Re = IO. 
and 0 5 Gr/Re’ I 40. The local Nusselt numbers for X < 0 
are numerically large, but their associated temperature 
differences (f1, - OI,, _ ,) cc I, so that the heat extracted 
upstream of X = 0 at the upper wall is small. In contrast, the 
heated lower wall results in Figure 3d. show that for X < 0. 
the heat transferred upstream by the buoyancy-induced 
recirculation strongly dominates that of the streamwise 
diffusion. The upper wall local Nusselt numbers show a 
characteristic increase for increasing thermal stratification for 
X > 0. As X + z, the asymptotic result for Nu, + I is 
attained, which is consistent with the predictions for the 
classical duct flow solution (see Shah and London 1978). In 
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Fjgure 5 Plots of the bulk temperature, upper wall local and 
mean Nusselt number, upper and lower wall friction factors for 
Re = 10 and the values of Gr/Re* indicated for Case II. p, 
Gr/Re* = 0 0; , Gr/Re* = 20.0 -~~ Gr/Re2 = 40. The upper wall 
is hotter from X = 0 to x. 

this case, plots of the lower wall Nusselt numbers are not 
showan, because thermal penetration is achieved only at some 
large distance downstream from the onset of heating; i.e., 
Nu,, << I in the entrance region, and as X --f #z, increases 
monotonically toward the fully developed value of unity as 
predicted by the classical duct flow solution. 

The mean upper wall heat transfer coefficients are illustrated 
in Figure Se as a function of X for Re = 10 and Gr/Re’ in the 
range [0,40]. and they are the integrals of the local Nusselt 
numbers results in Figure 5d. The main observation is that at 
any streamwise location downstream of the onset of heating, 
the average heat transferred through any specified duct wall 
length increases as the heating parameter Gr/Re’ increases. 
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Case III. Heated upper and lower walls 

The effect on the fluid and thermal fields of enforcing 
temperature discontinuities at the same streamwise location on 
both walls is to bring together all the individual characteristics 
of the Cases I and II and enhance them. The reduction of the 
lower wall shear stresses by upper surface thermal stratification 
certainly enlarges the recirculation region on the lower wall by 
moving the reattachment point a significant distance 
downstream. Upper wall conditions also influence the 
upstream separation point, which is displaced further upstream. 
and the depth of penetration across the duct. which also 
increases. Fluid that bypasses the recirculation region is 
accelerated through the reduced duct width, and the increased 
velocity gradients in the vicinity of the upper wall lead to 
increased advection of heat downstream and greater thermal 
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Figure 6 Plots of the bulk temperature, upper and lower wall mean 
Nusselt number, upper and lower wall friction factors for Re = 10, 
and the values of Gr/Re’ indicated for Case II. ~ 
Gr/Re’ = 0.0 ... Gr/Re2 = 20.0 ~~- Gr/Re’ = 40.0 both walls are 
hotter from X = 0 to x 

stratification. The results obtained by varying Re for Gr/Re2 
fixed, or fixing Re and changing Gr/Re’, remain broadly as 
described in the studies for the heating of a single wall. 

It has already been shown that the lower wall recirculation 
region reduces the heat transfer rates to below those of forced 
convection. Hence, when both walls are heated, and the reverse 
flow region is enlarged, then heat extracted by the upstream 
section (X < 0) of the lower wall is increased, and the heat 
transferred to the recirculation is reduced at each streamwise 
location for X 1 0. The reverse effect occurs at the upper wall 
where more powerful stratification leads to greater heat 
transfer. The basic form of the friction factors is not 
significantly different by the single-wall heated cases, but at 
each streamwise location, the actual deviation from the fully 
dev,eloped value is greater. Figure 6 contains plots of the bulk 
temperature, the wall shear stresses for both walls, and the 
upper and lower wall average Nusselt numbers. 

Conclusions 

The numerical results of Case I illustrates how a buoyancy- 
generated lower wall recirculation region significantly changes 
the heat transfer process. The mechanism of thermal diffusion 
from a hot surface and its advection downstream associated 
with forced convection is replaced about X = 0 by diffusion of 
heat into a slow recirculating region. which is then transported 
upstream of the thermal discontinuity, allowing heat to be 
extracted from the fluid. Within the reverse flow region, a 
heated viscous wall layer moves upstream, which results in a 
weaker thermal gradient. and thus reduces the heat transferred 
at the lower wall in the entrance region, as compared to that 
obtained for purely forced convection. 

The heat transfer process at the upper wall in Case II is aided 
by buoyancy. which generates a thermally stratified upper wall 
layer. and a large thermal gradient exists across this thin 
viscous wall layer, thus enhancing the entrance region heat 
transfer. If the thermal stratification is sufficiently powerful, a 
lower wall recirculation region will be created downstream of 
the onset of heating location. Parameter values for Re and 
Gr, Rc’ can be found that indicate that this, as yet unobserved, 
steady laminar flow should exist. 

The Case III results illustrate how the recirculation and 
stratification effects of the Cases I and II are combined and 
enhanced. In particular. an effect of lower wall recirculation is 
to generate a compressed viscous upper wall layer that aids the 
stratification process. The thermally stratified upper wall layer 
has been shovvn to induce lower wall recirculations and will. 
therefore, strengthen and enlarge an existing lower wall 
recirculation region. The separation and reattachment lengths 
are greater in Case III than in Case 1, and the lower wall heat 
transfer in Case III is poorer than in Case I because of greater 
recirculation effects. The upper surface heat transfer in case III 
is greater than in Case II because of increased stratification. A 
stability analysis of the above flows is now under way. 
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